.

- 1

÷.

ŧ

I.

_#

۴

à,

đ.

. 1

,

J

à

再论测量高斯光斑参数的调制盘方法

尹达人 许生龙 (昆明物理研究所)

提 要

假若光斑的强度分布是高斯模式,经扇形调制盘调制,跳量主频的各次谐波振幅,能推算出高斯光斑 的参数。

一、前 言

红外光斑的检测,在物理上和技术上都有重要的意义,其中最基本的检测是对于高斯光 斑的检测,这是因为,例如文献[1]就指出"在高斯函数中,只要选择适当的α值(高斯光斑的 参数,下文中的β),便可表示物点经红外光学系统后的扩散函数ρⁱ的近似情况。"

对于激光光斑,其横向光强分布一般是用高斯分布来描述的,所以高斯光斑的检测对激 光来说,就具有更为重要的意义。

在文献[2]中我们介绍了用栅栏形调制盘来检测高斯光斑参数,这个方法产生的是非周期信号,测试起来不太方便。本文介绍用扇形调制盘调制高斯光斑,测试主频的各次谐波振幅,能简便易行的推算出高斯光斑的参数。

二、对高斯光斑调制所产生的频谱

在文献[2]中我们已求得红外扫描系统信号波形及其频谱的计算通式:

$$p(t) = \int_{-\infty}^{\infty} Q(f_x, f_y) R^*(f_z, f_y) \exp[2\pi i (f_x x' + f_y y')] df_x df_y,$$
(1)

$$P(t) = \int_{-\infty}^{\infty} p(t) \exp\left[-2\pi i f t\right] dt, \qquad (2)$$

其中 $Q(f_x, f_y)$ 是目标象函数的空间频谱, $R(f_x, f_y)$ 是调制盘的传递函数, x'(t), y'(t) 是调制盘相对光斑的运动规律。在极坐标中(1)式可表示成:

$$p(t) = \int_0^\infty \int_0^{2\pi} Q(\rho, \varphi) R^*(\rho, \varphi) \exp[2\pi i\rho \xi' \cos(\varphi - \theta')\rho \, d\rho \, d\varphi_o \tag{3}$$

若调制盘以角速度ω相对光斑作圆运动,则

$$\xi' = l, \quad \theta' = \omega t, \tag{4}$$

其中1是光斑中心离调制盘中心的距离,如图1所示。将(3)式和(4)式代入(2)式得到:

收稿日期: 1982年6月10日, 收到修改稿日期: 19%2年12月20日

$$P(f) = \sum_{P=-\infty}^{\infty} \xi^{P} \int_{0}^{\infty} \int_{0}^{2\pi} Q(\rho, \varphi) R^{*}(\rho, \varphi) J_{P}(2\pi l) \exp(-iP\varphi) \rho \, d\rho \, d\varphi \delta(f - Pf_{0}),$$

$$f_{0} = \omega/2\pi_{0}$$
(5)

图 1

若待测光斑的强度分布是 $q(r) = (I_0/2\pi\beta^2) \exp(-r^2/2\beta^2)$, 这就意味着在总能量不变的条件下, 随着 β 的增加, 光斑逐渐弥散。其空间频谱

报

$$Q(\rho) \approx I_0 \exp(-2\pi^3 \beta^2 \rho^3)_{\circ} \qquad (6)$$

有 n 个黑白对的无限扇形调制盘(如图 1 所示),其选 过函数为 $r(\theta) = (1 \ 2) + \sum_{k=1}^{\infty} [2 \sin(k\pi/2)] k\pi] \cos k\pi \theta$,其 传递函数为

$$R(\rho, \varphi) = \left[\delta(\rho)/4\pi\rho\right] + \left(n/\pi^{2}\rho^{2}\right) \sum_{k=1}^{\infty} \sin\left(k\pi/2\right) \left(-i\right)^{kn} \cos kn\varphi, \quad (7)$$

把(6)和(7)式代入(5)式,利用文献[3]57页中的公式得到

$$P(f) = \frac{I_0}{2} \,\delta(f) + \sum_{k=1}^{\infty} (-1)^{k_0} \,\frac{I_0 n}{\pi} \sin \frac{k\pi}{2} \,\frac{\Gamma(kn/2)}{\Gamma(kn+1)} \left(\frac{l}{\sqrt{2} \beta}\right)^{k_0} \exp\left(-\frac{l}{2\beta^2}\right) \\ \times \mathcal{F}\left[\frac{kn}{2} + 1; \ kn + 1; \ \frac{l^2}{2\beta^2}\right] \delta(f - knf_0), \tag{8}$$

其中 $\Gamma(x)$ 是伽玛函数, $\mathscr{F}[\alpha, \beta, x]$ 是合流超比函数。 利用附录中证明的渐近表示式。 当 $x+\alpha-1\gg1$ 时, $\mathscr{F}[\alpha, \beta, x]\simeq[\Gamma(\beta)/\Gamma(\alpha)][e^{x}/(x+\alpha-1)^{(\beta-\alpha)}];$ 而当 $[(l^{\beta}/2\beta^{2})+(lm 2)]$ $\gg1$ 时, (8)式可简化成

$$P(f) = \frac{I_0}{2} \,\delta(f) + \sum_{k=1}^{\infty} \frac{2I_0}{k\pi} \sin \frac{k\pi}{2} \left(1 + \frac{kn\beta^3}{l^9}\right)^{-kn/9} \delta(f - knf_0) \,, \tag{9}$$

从(9)式可知, 其频谱成分除直流项外还有主频 nf_0 的奇次谐波。 式中 $(2 \ k\pi)\sin(k\pi/2)$ 是 调制盘透过函数的傅里叶展开系数, 而因子 $[1 + (kn\beta^3/l^3)]^{-kn/2}$ 反映调制盘的函数 n、光斑 的位置 l、光斑的结构参数 β 对频谱幅值的影响。当 β 不太小时, 频谱幅值随着 k 的增加衰 减很快,实际测量也证明了这一点。从(9)式可知, 相邻两个奇次谐波频谱的 P(f)值之比

 $I = P(3nf_0) / P(nf_0) = [1 + (n\beta^3, l^2)]^{n/3} \cdot 3[1 + (3n\beta^3, l^3)^{3n/3}]_{\circ}$ (10) 从(9)、(10)式可知,在光斑总能量不变的条件下,当光斑弥散开时(β 增加),其各次谐波振 幅都减少, I 也减少。已知 n, l,测得 I 后,从(10)式可求得 β 值。

三、对部分高斯光斑调制所产生的频谱

在许多情况下, 假定待测光斑是部分高斯光斑更符合实际的情况 (如图2所示), 即

$$q(r) = \frac{I_0}{2\pi\beta^3} \exp(-r^2/2\beta^2) \operatorname{Circ}(r/R), \quad \operatorname{Circ}(r/R) = \begin{cases} 1, \ 0 \le r \le R \\ 0, \ \text{ $\sharp k} \end{cases}$$
$$E_R = \int_0^{2\pi} \int_0^R q(r) r \, dr \, d\theta = I_0 [1 - \exp(-R^3/2\beta^3)]_0$$

3 卷

v.

٤

6

对于部分高斯光斑,若 $R - \epsilon$,随着 β 的增加, E_R 是减少的。 其空间频谱

 $Q(\rho) = 2I_0 \int_0^{R\sqrt{2}\rho} \exp(-x^2) J_0(2\sqrt{2}\pi\beta x\rho) x \, dx_o \quad (11)$

用(7)及(11)式代入(5)式,利用文献[3]58页中的公式, 当 *R* < *l*, *n* 是偶数时,

$$\begin{split} P(f) &= \frac{I_0}{2} \left[1 - \exp(-R^2/2\beta^2) \right] \delta(f) + \sum_{k=1}^{\infty} (-1)^{kn} \\ &\times \frac{2I_0}{k\pi} \sin(k\pi/2) \sum_{\ell=0}^{k\pi/2} \frac{(-kn/2)_{\ell}(kn/2)_{\ell}}{\xi!(1)_{\ell}} \\ &\times \left(\frac{\sqrt{2}}{l} \beta \right)^{2\ell} \gamma! \xi + 1, R^2 \cdot 2\beta^2) \delta(f - knf_0), \ (12) \end{split}$$

$$\begin{split} & \ddagger \psi \stackrel{\text{d}}{=} \xi \geqslant 1 \text{ ID}, \quad (Q)_{\ell} = Q(Q+1) \cdots (Q + \xi - 1) = T \cdot (Q + \xi) / \end{split}$$

 $T(Q); \stackrel{\text{\tiny def}}{=} \xi = 0 \text{ B}; (Q)_0 = 1, \gamma(\alpha, x) = \int_0^x \exp(-t) t^{(\alpha-1)} dt, (R_e \alpha)$

图 2 高斯光斑及部分高斯光斑 Fig. 2 A Gaussian spot and a sectional Gaussian spot

>0),为不完全 γ 函数。分析表明当($\pi l/n$)>2R 时,(12)式的频谱幅值随着 β 的增加而减少,上述条件不满足时,情况比较复杂。

从(12)式可知

ł

5

-'

>

3

$$I = \frac{P(3nf_0)}{P(nf_0)} = \frac{\sum_{\ell=0}^{2n/2} \frac{(-3n/2)_{\ell}(3n/2)_{\ell}}{\xi!(1)_{\ell}} \left(\frac{\sqrt{2}\beta}{l}\right)^{3\ell} \gamma(\xi+1; R^3/2\beta^2)}{3\sum_{\ell=0}^{n/2} \frac{(-n/2)_{\ell}(n/2)_{\ell}}{\xi!(1)_{\ell}} \left(\frac{\sqrt{2}\beta}{l}\right)^{2\ell} \gamma(\xi+1; R^3/2\beta^2)},$$
(13)

其中 R < l, n 是偶数。

测得主频及其三次谐波幅值,可根据(13)式确定 β。 从(12)式可知

$$K = \frac{P(n_1, f_0)}{P(n_2, f_0)} = \frac{\sum_{\ell=0}^{n_1/2} \frac{(-n_1/2)_{\ell} (n_1/2)_{\ell}}{\xi! (1)_{\ell}} \left(\frac{\sqrt{2} \beta}{l}\right)^{2\ell} \gamma(\xi + 1; R^2/2\beta^2)}{\sum_{\ell=0}^{n_1/2} \frac{(-n_2/2)_{\ell} (n_2/2)_{\ell}}{\xi! (1)_{\ell}} \left(\frac{\sqrt{2} \beta}{l}\right)^{2\ell} \gamma(\xi + 1; R^2/2\beta^2)},$$
(14)

其中 R<l, n1 及 n2 是偶数。

用两种齿数的调制盘(n₁, n₉),测量两个主频,根据(14)式确定β。

四、实测结果

用一个 n=20 个齿的扇形调制盘,在 l=50 mm 处,对一个 R=4.98 mm 的部分高斯光 班进行调制,调制盘转速 $\omega = 40$ cyc/see,实测得 P(800 Hz) = 110 mV, P(2400 Hz) = 3 mV, 则 I = P(2400 Hz)/P(800 Hz) = 0.027, 代入(13)式,通过计算机程序算得 $\beta = 3.18$ mm。

五、小 结

本文介绍的方法虽然简便易行,但是对扇形调制盘的等宽精度及其转速稳定性,扫描圆

Ъ

¢

٧_

٩._

4

1

的同心度,频谱仪的频率分辨率以及低噪音的前置放大器,都要求得很高,光斑愈小要求愈高。理论分析证明,扫描圆偏心或椭圆都会减少主频幅值并产生各次旁频成分,偏离越大, 影响越大。

对于调制盘转速的稳定性,使用分辨率为 $\Delta f = 4 \sim 6$ Hz 的频谱仪, 假若调制盘的转速是 $\omega = 40$ eye/see, 其转速的变化一定要小于 0.1 ω ; 频谱仪的频率分辨率要小于 $f_0/2$ 。

由于红外光学系统的复杂性,物点经光学系统成像后的像斑,严格的说也是十分复杂的。我们分析了各种同轴红外光学系统,计算机算出的点列图,其像斑的数学模型是以高斯模式为基础,再叠加上一些使之畸变的修正项,在视场中心是高斯分布,离中心越远,修正项的影响越大。对于这样一个系统物点成像斑的检测,是我们正在进行的工作。

附 录

対于合流超比函数. 当 Re6> Rea>0 時, **ℱ**[a; β; x] = $\frac{\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta-\alpha)} \int_{0}^{1} e^{\mathbf{r}(1-r)} (1-\eta)^{(\alpha-1)} \eta^{(\beta-\alpha-1)} d\eta$ $= \frac{\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta-\alpha)} e^{\mathbf{r}} \int_{0}^{1} e^{-\mathbf{r}\cdot\eta^{(\beta-\alpha-1)}} e^{(\alpha-1)\log(1-r)} d\eta$ $= \frac{\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta-\alpha)} e^{\mathbf{r}} \int_{0}^{1} \eta^{(\beta-\alpha-1)} \exp\left\{\left[-(x+\alpha-1)\eta - \frac{\eta^{2}}{2}(\alpha-1) - \frac{\eta^{3}}{3}(\alpha-1)\cdots\right]d\eta\right\}$ $= \frac{\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta-\alpha)} \frac{e^{\mathbf{r}}}{(x+\alpha-1)^{(\beta-\alpha)}} \int_{0}^{x+\alpha-1} \xi^{(\beta-\alpha-1)} \exp\left\{\left[-\xi - \frac{(\alpha-1)\xi^{2}}{2(x+\alpha-1)^{2}} - \frac{(\alpha-1)\xi^{2}}{3(x+\alpha-1)^{2}} + \cdots\right]d\eta\right\}$ 其中: $\xi = (x+\alpha-1)\eta,$ 若 $x+\alpha-1 \gg 1$ 時 $\mathbf{F}[\alpha; \beta; x] \cong \frac{\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta-\alpha)} \frac{e^{\mathbf{r}}}{(x+\alpha-1)^{(\alpha-\alpha)}} \int_{0}^{\infty} \xi^{(\beta+\alpha-1)} e^{-i} d\xi = \frac{\Gamma(\beta)}{\Gamma(\alpha)(x+\alpha-1)^{(\beta-\alpha)}} \int_{0}^{\infty} \xi^{(\beta+\alpha-1)} e^{-i} d\xi$

参考文献

[2] 产生龙,并达人:《光学学报》,1982, 2, No. 1 (Jan), 79.

[2] A.爱尔台里;《高级超越函数》,上海科学技术出版社,1959),57.

Re-discussion on the reticle method for measuring the parameters of Gaussian optical spot

Yin DAREN AND XC SHENLONG (Kunming Institute of Physics

(Received 10 June 1982, revised 20 December 1982)

Abstract

Suppose a optical spot is of a Gaussian intensity distribution and is modulated by a sectored reticle, then the parameters of this optical spot can be exactly derived from measurements of the harmonic amplitude spectrum.